Constacyclic codes over finite fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constacyclic codes over finite fields

An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length lp are characterized, where p is the characteristic of the finite field and l is a prime different from p.

متن کامل

Some constacyclic codes over finite chain rings

For λ an n-th power of a unit in a finite chain ring we prove that λ-constacyclic repeated-root codes over some finite chain rings are equivalent to cyclic codes. This allows us to simplify the structure of some constacylic codes. We also study the α+pβconstacyclic codes of length p over the Galois ring GR(p, r).

متن کامل

Skew constacyclic codes over finite chain rings

Skew polynomial rings over finite fields ([7] and [10]) and over Galois rings ([8]) have been used to study codes. In this paper, we extend this concept to finite chain rings. Properties of skew constacyclic codes generated by monic right divisors of x − λ, where λ is a unit element, are exhibited. When λ = 1, the generators of Euclidean and Hermitian dual codes of such codes are determined tog...

متن کامل

Constacyclic Codes over Finite Principal Ideal Rings

In this paper, we give an important isomorphism between contacyclic codes and cyclic codes,over finite principal ideal rings.Necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings are given.

متن کامل

A class of constacyclic codes over a finite field

Article history: Received 11 April 2011 Revised 13 September 2011 Accepted 14 September 2011 Available online 28 September 2011 Communicated by Jacques Wolfmann

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2012

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2012.10.001